









### SCIENTIFIC POTENTIAL + TECHNOLOGY PARK = SUCCESS

**HIPAR Sp. z o.o.** was created in 2004. The registered office of the Company is in Wola Rafałowska. At the beginning the main object of the Company operations was machining of steel and cast iron elements. Since 2006 the main products of the Company have been pulleys to Volkswagen motors. At that time the Company became a supplier of the pulleys for the production lines of new motors.

Since 2015 **Hipar Sp. z o.o.** has also manufactured equipment for independent operation of power plants outside of the power grid. Among other things, the Company offers innovative vertical axis wind turbines (VAWT) and photovoltaic trackers enabling the generation of 45% more energy from the PV panels compared to the stationary system.

Hipar as a production-trade enterprise provides an individual approach to each customer, adapting all its offered products to customer needs and environmental conditions i.e.: the geographical location, insolation, landform, level of the average wind speed which makes it an unmatched company in comparison to other companies.

1

Ann mill





ECOROTE | 2



## **THE ADVANTAGES** OF OUR WIND TURBINES

ECOROTE Wind Turbines Line It is our flagship product. We produce turbines with

ECOROTE turbines have been developed by our team of designers and constructors in close cooperation with the Rzeszow University of Technology's flagship research

High manufacturing

Aesthetic appearance

Possible operation at temperatures ranging from -40°C to +70°C

Resistance to any weather

Polish engineering and



Low starting speed – approx. 1 m/s



Service-free operation





Absence of friction devices



High quality of the applied materials



No detrimental impact on the environment



Hipar sp. z o.o.

# **THE ADVANTAGES OF TURBINE CONSTRUCTION**

A wind turbine allows for processing 71% (0.42 of Betz number) of wind energy into electricity. 98% of materials of which our products are made come from Polish manufacturers. Disc generator that converts the kinetic energy of wind into electricity has been developed so as not to have friction elements, by which it excludes maintenance. The blades of the turbine, thanks to the use of extruded aluminum profile of seamless monolith construction, are characterized by resistance to thermal expansion caused by heat. In addition, a white, sunlight reflecting paint, of C5+M resistance class is applied on the turbines. In addition, steel elements are galvanized and aluminum elements are anodized in order to ensure their effective corrosion protection.



www.hipar.pl

www.hipar.pl

# TURBINE **PARAMETERS**

| Turbine name                          | ECOROTE 300                                                                                                           | ECOROTE 1500                                       | ECOROTE 2800   | ECOROTE 9800 |  |  |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------|--------------|--|--|
| Turbine power                         | 300W                                                                                                                  | 1500W                                              | 1500W 2800W    |              |  |  |
| Impeller diameter                     | 1                                                                                                                     | 2,2                                                | 2,2 2,2        |              |  |  |
| Turbine height                        | 1,2                                                                                                                   | 1,5 3                                              |                | 5,5          |  |  |
| Starting speed                        | 3 m/s                                                                                                                 | 1,5m/s                                             | 1,5m/s 1,25m/s |              |  |  |
| Rated speed                           | 10m/s                                                                                                                 | 12m/s                                              |                |              |  |  |
| Total weight                          | 48 kg                                                                                                                 | 155 kg 175 kg                                      |                | 550 kg       |  |  |
| Wings and arms                        | Aluminium structure with resistance tested in extreme conditions                                                      |                                                    |                |              |  |  |
| Brake                                 | Electromagnetic                                                                                                       | Electromagnetic and electromechanical additionally |                |              |  |  |
| Operation system                      | On-Grid/Off-Grid/Hybrid                                                                                               |                                                    |                |              |  |  |
| Controller                            | Microprocessor                                                                                                        |                                                    |                |              |  |  |
| Inverter output voltage               | 24/48/96V DC<br>or 230V AC                                                                                            | 1x230V AC or 3                                     | 3x230V AC 50Hz |              |  |  |
| Inverter output voltage               | 1                                                                                                                     | 1 or 3                                             |                | 3            |  |  |
| Generator output voltage              | AC                                                                                                                    |                                                    |                |              |  |  |
| Noise level acc. to PN-EN<br>61400-11 | < 46 dB at 8 m/s in the distance of 60 m                                                                              |                                                    |                |              |  |  |
| Operating temperature                 | -40°C to +70°C                                                                                                        |                                                    |                |              |  |  |
| Corrosion protection                  | Anodizing, galvanizing, powder coating C5+M                                                                           |                                                    |                |              |  |  |
| Mast types                            | Concrete posts, metal posts, lattice work, and roof platforms<br>Possible structure manufacturing to individual order |                                                    |                |              |  |  |
| Mast sizes                            | 2 m to 25 m                                                                                                           |                                                    |                |              |  |  |
| Compliance with standards             | CE,IEC 61400-2, 61400-11                                                                                              |                                                    |                |              |  |  |

#### ECOROTE | 4 -





#### 5 | ECOROTE

## **USE OF** TURBINES



#### 1. On-grid system/ On-grid hybrid system

a solution usually applied when a building is connected to power engineering network. It is one of the simplest systems consisting of a wind turbine of any capacity, grid inverter of the output voltage of 1 x 230 V AC or 3 x 230 V A, two-directional meter to measure the power generated and consumed, security measures in the form of circuit breakers and surge arresters, turbine stopping resistor and connection to the power grid. On-Grid systems may also be developed for photovoltaic modules, thus creating Hybrid systems. Moreover, batteries saving surplus power may be installed. In case of frequent power failures from the grid, the system may be additionally provided with a diesel generator.

An On-Grid system enables the use of directly generated power and resale of the power in case of energy surpluses or accumulation in the power grid.

#### 2. Off-grid system / Off-grid hybrid system





#### 3. On/off-grid system / On/off-grid hybrid system

a solution combining the advantages of On-Grid and Off-Grid systems. An On/Off-Grid system removes the problem of power failure, usually as a result of weather anomaly, power grid repair, etc. The system first of all accumulates surplus energy in batteries and uses the accumulated energy when the wind turbine combined with the additional photovoltaic panels are not generating enough energy, or uses the batteries in case of complete grid failure. The battery of specific capacity takes missing energy from the power grid through the system controlling inverter as soon as the battery has been completely discharged. The system may also output energy to the gird when the batteries are fully loaded and the energy generated by the wind turbine and the photovoltaic panels is sufficient for the building supply.

Legend -

1. Ecorote wind turbine 2. Inverter/hybrid controller 3. Batteries 4. 230V receivers 5. Water heater / hot water / heating 6. Photovoltaic panels (in a hybrid system) 7.Generator (optional) 8. Switch /AC counter 9. Network



# **TYPES OF MASTS**

#### PRE-STRESSED MAST

are made by concrete pouring into a rotating conical mould, which ensures high technical parameters and smooth surface. The masts are characterised with long-lasting operation and durability. They are cheaper than other masts of similar heights. An attachment with platform for turbine installation is needed for a pre-stressed mast.

#### STEEL MAST WITH CABLE STAYS

are made of combined thin-wall tubes. Lightweight construction and the possibility of the mast disassembly into short sections ensure comfortable transport. The stays fixed to concrete anchors balance the stress that may be present. The turbine is mounted directly on the mast, without any additional attachments.



#### FLAT-ROOF MAST

have the form of latticework of large span between the legs, which ensures stability and durability of the structure. It is possible to design a mast which does not reach higher than three metres above the roof. Four structure elements ensure simple transport, installation and dismantling. On flat roofs two vibration damping connectors are additionally applied in order to minimise the vibrations transferred to the building.

#### Hipar sp. z o.o.

www.hinar.ol

www.hinar.n

#### ECOROTE | 6-



# Productivity analysis of **ECOROTE 2800** turbine for selected regions

|   | Country        | City           | Average<br>wind<br>speed in a year<br>[m/s] | Annual<br>energy<br>production<br>[kWh] | Co2 emissions<br>savings<br>[kg CO2] | Cour     |
|---|----------------|----------------|---------------------------------------------|-----------------------------------------|--------------------------------------|----------|
| ļ | Argentina      | Buenos Aires   | 5,5                                         | 3225                                    | 2612                                 | Morocco  |
|   | A              | Melbourne      | 8,9                                         | 21006                                   | 17015                                | Netherla |
|   | Australia      | Sydney         | 8,1                                         | 14896                                   | 12066                                |          |
|   | Austria        | Vienna         | 5,9                                         | 4276                                    | 3464                                 | Nigeria  |
|   | Belarus        | Minsk          | 5,5                                         | 3224                                    | 2611                                 | Norway   |
|   | Belgium        | Brussels       | 5,8                                         | 3992                                    | 3234                                 | Norway   |
|   | Brazil         | Rio De Janeiro | 6                                           | 4575                                    | 3706                                 |          |
|   | Bulgaria       | Sofia          | 3,8                                         | 721                                     | 584                                  | Poland   |
|   |                | Varna          | 5,4                                         | 2994                                    | 2425                                 |          |
|   | Canada         | Ottawa         | 7,7                                         | 12287                                   | 9952                                 | Portuga  |
|   | Chipa          | Beijing        | 5,5                                         | 3224                                    | 2611                                 | Qatar    |
|   | China          | Shanghai       | 6,7                                         | 7115                                    | 5763                                 |          |
|   | Creatia        | Dubrovnik      | 6,8                                         | 7547                                    | 6113                                 | Russia   |
|   | Croatia        | Zagreb         | 4,5                                         | 1434                                    | 1162                                 |          |
|   | Czech Republic | Prague         | 5,4                                         | 2994                                    | 2425                                 |          |
|   | Denmark        | Copenhagen     | 6,4                                         | 5926                                    | 4800                                 | South A  |
|   | Estonia        | Tallinn        | 7,1                                         | 8955                                    | 7254                                 |          |
|   | Finland        | Helsinki       | 7,2                                         | 9462                                    | 7664                                 | Spain    |
|   |                | Bordeaux       | 5,9                                         | 4276                                    | 3464                                 |          |
|   | France         | Marseille      | 7,8                                         | 12910                                   | 10457                                | Sweden   |
|   |                | Paris          | 5,7                                         | 3722                                    | 3015                                 |          |
|   |                | Berlin         | 5                                           | 2195                                    | 1778                                 | Turkey   |
|   | Germany        | Hamburg        | 6,3                                         | 5564                                    | 4507                                 | UAE      |
|   |                | Hannover       | 5,1                                         | 2378                                    | 1926                                 | Ukraine  |
|   | Greece         | Athens         | 6,2                                         | 5218                                    | 4227                                 |          |
|   | Hungary        | Budapest       | 6,6                                         | 3224                                    | 2611                                 |          |
|   | Iceland        | Reykjavik      | 8,8                                         | 20181                                   | 16347                                | United   |
|   | India          | Mumbai         | 3,8                                         | 721                                     | 584                                  |          |
|   |                | Dublin         | 7,8                                         | 12910                                   | 10457                                |          |
|   | Ireland        | Waterford      | 8,3                                         | 16316                                   | 13216                                | USA      |
|   | Israel         | Tel Aviv       | 5,7                                         | 3722                                    | 3015                                 |          |
|   |                | Catania        | 4,6                                         | 1567                                    | 1269                                 |          |
|   | Italy          | Milan          | 3,3                                         | 405                                     | 328                                  |          |
|   |                | Roma           | 4,1                                         | 983                                     | 796                                  | And      |
|   | Japan          | Tokyo          | 5,9                                         | 4276                                    | 3464                                 |          |
| ł |                | Aktau          | 7,3                                         | 9988                                    | 8090                                 | pro      |
|   | Kazakhstan     | Almaty         | 6,4                                         | 5926                                    | 5926                                 | turb     |
|   |                | Astana         | 6,9                                         | 7998                                    | 6478                                 |          |
|   |                | Atyrau         | 7,6                                         | 11683                                   | 9463                                 | (mou     |
|   | Latvia         | Riga           | 7,1                                         | 8955                                    | 7254                                 | rougl    |
| L | Lithuania      | Klaipeda       | 6,6                                         | 6701                                    | 5428                                 |          |
|   |                | Vilnius        | 5,7                                         | 3722                                    | 3015                                 |          |
|   | Mexico         | Mexico         | 5,2                                         | 2572                                    | 2083                                 |          |

Hipar sp. z o.o.

| Country        | City           | Average<br>wind<br>speed in a year<br>[m/s] | Annual<br>energy<br>production<br>[kWh] | Co2 emissions<br>savings<br>[kg CO2] |
|----------------|----------------|---------------------------------------------|-----------------------------------------|--------------------------------------|
| Morocco        | Marrakech      | 5,8                                         | 3992                                    | 3234                                 |
| Netherlands    | Amsterdam      | 6,6                                         | 6701                                    | 5428                                 |
| Nigoria        | Abuja          | 4,1                                         | 983                                     | 796                                  |
| Nigeria        | Lagos          | 5,5                                         | 3224                                    | 2611                                 |
| Norway         | Bergen         | 8,4                                         | 17053                                   | 13813                                |
|                | Oslo           | 7,2                                         | 9462                                    | 7664                                 |
|                | Gdansk         | 6,8                                         | 7547                                    | 6113                                 |
| Poland         | Cracow         | 5,2                                         | 2572                                    | 2083                                 |
|                | Warsaw         | 5,4                                         | 2994                                    | 2425                                 |
| Portugal       | Lisbon         | 7,1                                         | 8955                                    | 7254                                 |
| Qatar          | Doha           | 5,8                                         | 3992                                    | 3234                                 |
|                | Novosibirsk    | 5,9                                         | 4276                                    | 3464                                 |
| Russia         | Moscow         | 5,9                                         | 4276                                    | 3464                                 |
|                | St. Petersburg | 6,9                                         | 7998                                    | 6478                                 |
|                | Vladivostok    | 6,5                                         | 6305                                    | 5107                                 |
| South Africa   | Capetown       | 7,4                                         | 10533                                   | 8532                                 |
|                | Barcelona      | 5,4                                         | 2994                                    | 2425                                 |
| Spain          | Madrit         | 4,8                                         | 1862                                    | 1508                                 |
|                | Malaga         | 6,4                                         | 5926                                    | 4800                                 |
| Sweden         | Goteborg       | 7,1                                         | 8955                                    | 7254                                 |
| Sincucii       | Sztokholm      | 6,7                                         | 7115                                    | 5763                                 |
| Turkey         | Istanbul       | 6,6                                         | 6701                                    | 5428                                 |
| UAE            | Abu Dhabi      | 4                                           | 889                                     | 720                                  |
| Ukraine        | Kiev           | 5,3                                         | 2777                                    | 2249                                 |
| Okraine        | Odessa         | 6,3                                         | 5564                                    | 4507                                 |
|                | Glasgow        | 6,7                                         | 7115                                    | 5763                                 |
| United Kingdom | Liverpool      | 7,6                                         | 11683                                   | 9463                                 |
|                | London         | 5,3                                         | 2777                                    | 2249                                 |
|                | Kanzas         | 6,6                                         | 6701                                    | 5428                                 |
| USA            | New York       | 6,3                                         | 5564                                    | 4507                                 |

# An example amount of energy produced of the **ECOROTE 2800** turbine

(mounted at 15m height, taking with terrain roughness class of 1 and a Weibull factor of k=2.6)

### **PV TRACKERS** (follow-up systems)



### Created for maximum use of solar energy

PV trackers (follow-up systems) are devices that increase the efficiency of a photovoltaic system by up to approx. 45% per year, by reducing the losses resulting from the sunlight angle. The movement of the panels prevents the deposition of dust and other contaminants that can cause the effect of local overheating of the panels. The follow-up system increases productivity of inverters that control the process of electricity generating from sunlight. The inverters work best at a high load, which is obtained only by using the follow-up systems. Through the use of wind and snow/ice sensors in the control automation, we protect the tracker against adverse weather conditions.

#### PERFECTLY PRODUCED

The structure is entirely made of steel and aluminum, it is driven by two German K + G cylinders and coronary transmission designed for reliable operation in extreme weather conditions.

www.hipar.pl

www.hipar.p

ECOROTE | 8

Hipar's offer includes trackers from

 $3000 W_{\rm to} \ 8000 W$ 

